

ESBWR Design Control Document

Tier 2

Table of Contents

Contents

1. Introduction and General Description of Plant

1.1 Introduction

- 1.1.1 Format and Content
- 1.1.2 General Description
- 1.1.2.1 ESBWR Standard Plant Scope
- 1.1.2.2 Type of License Request
- 1.1.2.3 Number of Plant Units
- 1.1.2.4 Description of Location
- 1.1.2.5 Type of Nuclear Steam Supply
- 1.1.2.6 Type of Containment
- 1.1.2.7 Rated Core Thermal Power
- 1.1.3 COL Information
- 1.1.4 References

1.2 General Plant Description

- 1.2.1 Principal Design Criteria
- 1.2.1.1 General Power Generation (Nonsafety) Design Criteria
- 1.2.1.2 General Safety Design Criteria
- 1.2.1.3 Nuclear System Criteria
- 1.2.1.4 Electrical Power Systems Criteria
- 1.2.1.5 Auxiliary Systems Criteria
- 1.2.1.6 Shielding and Access Control Criteria
- 1.2.1.7 Power Conversion Systems Criteria
- 1.2.1.8 Nuclear System Process Control Criteria
- 1.2.1.9 Electrical Power System Process Control Criteria
- 1.2.2 Plant Description
- 1.2.2.1 Nuclear Steam Supply
- 1.2.2.2 Controls and Instrumentation
- 1.2.2.3 Radiation Monitoring Systems
- 1.2.2.4 Core Cooling Systems Used For Abnormal Events
- 1.2.2.5 Reactor Servicing Equipment
- 1.2.2.6 Reactor Auxiliary Systems
- 1.2.2.7 Control Panels
- 1.2.2.8 Nuclear Fuel
- 1.2.2.9 Control Rods
- 1.2.2.10 Radioactive Waste Management System
- 1.2.2.11 Power Cycle
- 1.2.2.12 Station Auxiliaries
- 1.2.2.13 Station Electrical System
- 1.2.2.14 Power Transmission
- 1.2.2.15 Containment and Environmental Control Systems
- 1.2.2.16 Structures and Servicing Systems

- 1.2.2.17 Intake Structure and Servicing Equipment
- 1.2.2.18 Yard Structures and Equipment
- 1.2.3 COL Information
- 1.2.4 References

1.3 Comparison Tables

1.4 Identification of Agents and Contractors

1.5 Requirements for Further Technical Information

- 1.5.1 Evolutionary Design
- 1.5.2 Analysis and Design Tools
- 1.5.2.1 TRACG
- 1.5.2.2 Scope of Application of TRACG to ESBWR
- 1.5.3 Testing
- 1.5.3.1 Major ESBWR Unique Test Programs
- 1 5 4 References

1.6 Material Incorporated by Reference

1.7 Drawings and Other Detailed Information

- 1.7.1 Electrical, Instrumentation and Control Drawings
- 1.7.2 Piping and Instrumentation Diagrams
- 1.7.3 Other Detailed Information

1.8 Interfaces for Standard Designs

- 1.8.1 Identification of NSSS Safety-Related Interfaces
- 1.8.2 Identification of BOP Interfaces
- 1.8.2.1 Circulating Water System (CIRC)
- 1.8.2.2 Plant Service Water System (PSWS)
- 1.8.2.3 Off-site Electrical Power
- 1.8.2.4 Makeup Water System (MWS)
- 1.8.2.5 Potable and Sanitary Water
- 1.8.2.6 Communications Systems

1.9 Conformance with Standard Review Plan and Applicability of Codes and Standards

- 1.9.1 Conformance with Standard Review Plan
- 1.9.2 Applicability to Regulatory Criteria
- 1.9.3 Applicability of Experience Information
- 1.9.4 COL information
- 1.9.4.1 SRP Deviations
- 1.9.4.2 Experience Information
- 1.9.5 References

1.10 Summary of COL Items

1.11 Technical Resolutions of Task Action Plan Items, New Generic Issues, New Generic Safety Issues and Chernobyl Issues

1.11.1 Approach

Appendix 1A Response to TMI Related Matters

1A.1 References

Appendix 1B Plant Shielding to Provide Access to Vital Areas and Protective Safety Equipment for Post-Accident Operation [II.B.2]

- 1B.1 Introduction
- 1B.2 Summary of Shielding Design Review
- 1B.3 Containment Description and Post-Accident Operations
- 1B.3.1 Description of Containment
- 1B.3.2 Post-Accident Access of Vital Areas and Systems
- 1B.3.3 Post-Accident Operation
- 1B.4 Design Review Bases
- 1B.4.1 Radioactive Source Term and Dose Rates
- 1B.4.2 Accidents Used as the Basis for the Specified Radioactivity Release
- 1B.4.3 Availability of Offsite Power
- 1B.4.4 Radiation Qualification Conditions
- 1B.5 Results of the Review
- 1B.5.1 Systems Required Post-Accident
- 1B.5.1.1 Necessary Post-Accident Functions and Systems
- 1B.5.1.2 Emergency Core Cooling and Residual Heat Removal Systems
- 1B.5.1.3 Flammability Control
- 1B.5.1.4 Fission Product Removal and Control System
- 1B.5.1.5 Instrumentation and Control, Power and Habitability Systems

Appendix 1C Industry Operating Experience

- 1C.1 Evaluation
- 1C.2 References

Appendix 1D Regulatory Treatment of Non-Safety Systems

- 1D.1 Review of RTNSS Criteria
- 1D.2 Specific Steps in the RTNSS Process
- 1D.3 Conclusion
- 1D.4 COL Information
- 1D.5 References

2. Site Characteristics

2.0 Introduction

2.1 Geography and Demography

- 2.1.1 Site and Location Description
- 2.1.2 Exclusion Area Authority and Control
- 2.1.3 Population Distribution

2.2 Nearby Industrial, Transportation, and Military Facilities

- 2.2.1 2.2.2 Identification of Potential Hazards in Site Vicinity
- 2.2.3 Evaluation of Potential Accidents

2.3 Meteorology

- 2.3.1 Regional Climatology
- 2.3.2 Local Meteorology
- 2.3.3 On-site Meteorological Measurements Program
- 2.3.4 Short-Term Diffusion Estimates for Accidental Atmospheric Releases
- 2.3.5 Long-Term Diffusion Estimates

2.4 Hydrologic Engineering

- 2.4.1 Hydrologic Description
- 2.4.2 Floods
- 2.4.3 Probable Maximum Flood on Streams and Rivers
- 2.4.4 Potential Dam Failures
- 2.4.5 Probable Maximum Surge and Seiche Flooding
- 2.4.6 Probable Maximum Tsunami Flooding
- 2.4.7 Ice Effects
- 2.4.8 Cooling Water Canals and Reservoirs
- 2.4.9 Channel Diversions
- 2.4.10 Flooding Protection Requirements
- 2.4.11 Cooling Water Supply
- 2.4.12 Groundwater
- 2.4.13 Accidental Releases of Liquid Effluents in Ground and Surface Waters
- 2.4.14 Technical Specification and Emergency Operation Requirements

2.5 Geology, Seismology, and Geotechnical Engineering

- 2.5.1 Basic Geologic and Seismic Information
- 2.5.2 Vibratory Ground Motion
- 2.5.3 Surface Faulting
- 2.5.4 Stability of Subsurface Materials and Foundations
- 2.5.5 Stability of Slopes

2.6 Requirements for Determination of Site Acceptability

- 2.6.1 Design Basis Events
- 2.6.2 Severe Accidents

3. Design of Structures, Components, Equipment, and Systems

3.1 Conformance with NRC General Design Criteria

- 3.1.1 Group I Overall Requirements
- 3.1.1.1 Criterion 1 Quality Standards and Records
- 3.1.1.2 Criterion 2 Design Bases for Protection Against Natural Phenomena
- 3.1.1.3 Criterion 3 Fire Protection
- 3.1.1.4 Criterion 4 Environmental and Dynamic Effects Design Bases
- 3.1.1.5 Criterion 5 Sharing of Structures, Systems, and Components
- 3.1.2 Group II Protection by Multiple Fission Product Barriers
- 3.1.2.1 Criterion 10 Reactor Design
- 3.1.2.2 Criterion 11 Reactor Inherent Protection
- 3.1.2.3 Criterion 12 Suppression of Reactor Power Oscillations
- 3.1.2.4 Criterion 13 Instrumentation and Control
- 3.1.2.5 Criterion 14 Reactor Coolant Pressure Boundary
- 3.1.2.6 Criterion 15 Reactor Coolant System Design
- 3.1.2.7 Criterion 16 Containment Design
- 3.1.2.8 Criterion 17 Electric Power Systems
- 3.1.2.9 Criterion 18 Inspection and Testing of Electric Power Systems
- 3.1.2.10 Criterion 19 Control Room
- 3.1.3 Group III Protection and Reactivity Control Systems
- 3.1.3.1 Criterion 20 Protection System Functions
- 3.1.3.2 Criterion 21 Protection System Reliability and Testability
- 3.1.3.3 Criterion 22 Protection System Independence
- 3.1.3.4 Criterion 23 Protection System Failure Modes
- 3.1.3.5 Criterion 24 Separation of Protection and Control Systems
- 3.1.3.6 Criterion 25 Protection System Requirements for Reactivity Control Malfunctions
- 3.1.3.7 Criterion 26 Reactivity Control System Redundancy and Capability
- 3.1.3.8 Criterion 27 Combined Reactivity Control Systems Capability
- 3.1.3.9 Criterion 28 Reactivity Limits
- 3.1.3.10 Criterion 29 Protection Against Anticipated Operational Occurrences
- 3.1.4 Group IV Fluid Systems
- 3.1.4.1 Criterion 30 Quality of Reactor Coolant Pressure Boundary
- 3.1.4.2 Criterion 31 Fracture Prevention of Reactor Coolant Pressure Boundary
- 3.1.4.3 Criterion 32 Inspection of Reactor Coolant Pressure Boundary
- 3.1.4.4 Criterion 33 Reactor Coolant Makeup
- 3.1.4.5 Criterion 34 Residual Heat Removal
- 3.1.4.6 Criterion 35 Emergency Core Cooling
- 3.1.4.7 Criterion 36 Inspection of Emergency Core Cooling System
- 3.1.4.8 Criterion 37 Testing of Emergency Core Cooling System
- 3.1.4.9 Criterion 38 Containment Heat Removal
- 3.1.4.10 Criterion 39 Inspection of Containment Heat Removal System
- 3.1.4.11 Criterion 40 Testing of Containment Heat Removal System
- 3.1.4.12 Criterion 41 Containment Atmosphere Cleanup
- 3.1.4.13 Criterion 42 Inspection of Containment Atmosphere Cleanup Systems
- 3.1.4.14 Criterion 43 Testing of Containment Atmosphere Cleanup Systems

- 3.1.4.15 Criterion 44 Cooling Water
- 3.1.4.16 Criterion 45 Inspection of Cooling Water System
- 3.1.4.17 Criterion 46 Testing of Cooling Water System
- 3.1.5 Group V Reactor Containment
- 3.1.5.1 Criterion 50 Containment Design Basis
- 3.1.5.2 Criterion 51 Fracture Prevention of Containment Pressure Boundary
- 3.1.5.3 Criterion 52 Capability for Containment Leakage Rate Testing
- 3.1.5.4 Criterion 53 Provisions for Containment Testing and Inspection
- 3.1.5.5 Criterion 54 Piping Systems Penetrating Containment
- 3.1.5.6 Criterion 55 Reactor Coolant Pressure Boundary Penetrating Containment
- 3.1.5.7 Criterion 56 Primary Containment Isolation
- 3.1.5.8 Criterion 57 Closed System Isolation Valves
- 3.1.6 Group VI Fuel and Radioactivity Control
- 3.1.6.1 Criterion 60 Control of Releases of Radioactive Materials to the Environment
- 3.1.6.2 Criterion 61 Fuel Storage and Handling and Radioactivity Control
- 3.1.6.3 Criterion 62 Prevention of Criticality in Fuel Storage and Handling
- 3.1.6.4 Criterion 63 Monitoring Fuel and Waste Storage
- 3.1.6.5 Criterion 64 Monitoring Radioactivity Releases
- 3.1.7 COL Information
- 3.1.8 References

3.2 Classification of Structures, Systems and Components

- 3.2.1 Seismic Classification
- 3.2.2 System Quality Group Classification
- 3.2.2.1 Quality Group A
- 3.2.2.2 Quality Group B
- 3.2.2.3 Quality Group C
- 3.2.2.4 Quality Group D
- 3.2.3 Safety Classification
- 3.2.4 COL Information
- 3.2.5 References

3.3 Wind and Tornado Loadings

- 3.3.1 Wind Loadings
- 3.3.1.1 Design Wind Velocity and Recurrence Interval
- 3.3.1.2 Determination of Applied Forces
- 3.3.2 Tornado Loadings
- 3.3.2.1 Applicable Design Parameters
- 3.3.2.2 Determination of Forces on Structures
- 3.3.2.3 Effect of Failure of Structures or Components Not Designed for Tornado Loads
- 3.3.3 COL Information
- 3.3.3.1 Site-Specific Design Basis Wind and Tornado
- 3.3.3.2 Effect of Remainder of Plant Structures, Systems and Components not Designed for Tornado Loads
- 3.3.4 References

3.4 Water Level (Flood) Design

- 3.4.1 Flood Protection
- 3.4.1.1 Flood Protection Summary
- 3.4.1.2 Flood Protection From External Sources
- 3.4.1.3 Internal Flooding Evaluation Criteria
- 3.4.1.4 Evaluation of Internal Flooding
- 3.4.2 Analysis Procedures
- 3.4.3 COL Information

3.5 Missile Protection

- 3.5.1 Missile Selection and Description
- 3.5.1.1 Internally Generated Missiles (Outside Containment)
- 3.5.1.2 Internally Generated Missiles (Inside Containment)
- 3.5.1.3 Turbine Missiles
- 3.5.1.4 Missiles Generated by Natural Phenomena
- 3.5.1.5 Site Proximity Missiles (Except Aircraft)
- 3.5.1.6 Aircraft Hazards
- 3.5.2 Structures, Systems, and Components to be Protected from Externally Generated Missiles
- 3.5.3 Barrier Design Procedures
- 3.5.3.1 Local Damage Prediction
- 3.5.3.2 Overall Damage Prediction
- 3.5.4 COL Information
- 3.5.4.1 Missiles Generated by Natural Phenomena from Remainder of Plant Structures, Systems, and Components
- 3.5.4.2 Site Proximity Missiles and Aircraft Hazards
- 3.5.4.3 Impact of Failure of Nonsafety-Related Structures, Systems and Components
- 3.5.4.4 Turbine System Maintenance Program
- 3.5.5 References

3.6 Protection Against Dynamic Effects Associated with the Postulated Rupture of Piping

- 3.6.1 Plant Design for Protection Against Postulated Piping Failures in Fluid Systems Inside and Outside of Containment
- 3.6.1.1 Design Bases
- 3.6.1.2 Description
- 3.6.1.3 Design Evaluation
- 3.6.2 Determination of Break Locations and Dynamic Effects Associated with the Postulated Rupture of Piping
- 3.6.2.1 Criteria Used to Define Break and Crack Location and Configuration
- 3.6.2.2 Analytic Methods to Define Blowdown Forcing Functions and Response Models
- 3.6.2.3 Dynamic Analysis Methods to Verify Integrity and Operability
- 3.6.2.4 Guard Pipe Assembly Design
- 3.6.3 Leak-Before-Break Evaluation Procedures
- 3.6.3.1 Scope of LBB Applicability
- 3.6.3.2 Conditions for LBB Applicability
- 3.6.4 As-built Inspection of high-Energy Pipe Break Mitigation Features
- 3.6.5 COL Information

3.6.6 References

3.7 Seismic Design

- 3.7.1 Seismic Design Parameters
- 3.7.1.1 Design Ground Motion
- 3.7.1.2 Percentage of Critical Damping Values
- 3.7.1.3 Supporting Media for Category I Structures
- 3.7.2 Seismic System Analysis
- 3.7.2.1 Seismic Analysis Methods
- 3.7.2.2 Natural Frequencies and Responses
- 3.7.2.3 Procedures Used for Analytical Modeling
- 3.7.2.4 Soil-Structure Interaction
- 3.7.2.5 Development of Floor Response Spectra
- 3.7.2.6 Three Components of Earthquake Motion
- 3.7.2.7 Combination of Modal Responses
- 3.7.2.8 Interaction of Non-Category I Structures with Seismic Category I Structures
- 3.7.2.9 Effects of Parameter Variations on Floor Response Spectra
- 3.7.2.10 Use of Equivalent Vertical Static Factors
- 3.7.2.11 Methods Used to Account for Torsional Effects
- 3.7.2.12 Comparison of Responses
- 3.7.2.13 Analysis Procedure for Damping
- 3.7.2.14 Determination of Seismic Category I Structure Overturning Moments
- 3.7.3 Seismic Subsystem Analysis
- 3.7.3.1 Seismic Analysis Methods
- 3.7.3.2 Determination of Number of Earthquake Cycles
- 3.7.3.3 Procedures Used for Analytical Modeling
- 3.7.3.4 Basis for Selection of Frequencies
- 3.7.3.5 Analysis Procedure for Damping
- 3.7.3.6 Three Components of Earthquake Motion
- 3.7.3.7 Combination of Modal Responses
- 3.7.3.8 Interaction of Other Systems with Seismic Category I Systems
- 3.7.3.9 Multiply-Supported Equipment and Components with Distinct Inputs
- 3.7.3.10 Use of Equivalent Vertical Static Factors
- 3.7.3.11 Torsional Effects of Eccentric Masses
- 3.7.3.12 Effect of Differential Building Movements
- 3.7.3.13 Seismic Category I Buried Piping, Conduits and Tunnels
- 3.7.3.14 Methods for Seismic Analysis of Seismic Category I Concrete Dams
- 3.7.3.15 Methods for Seismic Analysis of Above-Ground Tanks
- 3.7.3.16 Design of Small Branch and Small Bore Piping
- 3.7.3.17 Interaction of Other Piping with Seismic Category I Piping
- 3.7.4 Seismic Instrumentation
- 3.7.4.1 Comparison with Regulatory Guide 1.12
- 3.7.4.2 Location and Description of Instrumentation
- 3.7.4.3 Control Room Operator Notification
- 3.7.4.4 Comparison of Measured and Predicted Responses
- 3.7.4.5 In-Service Surveillance

- 3.7.5 COL Information
- 3.7.5.1 Seismic Design Parameters
- 3.7.5.2 Seismic Analysis of EBAS Building
- 3.7.6 References

3.8 Seismic Category I Structures

- 3.8.1 Concrete Containment
- 3.8.1.1 Description of the Containment
- 3.8.1.2 Applicable Codes, Standards, and Specifications
- 3.8.1.3 Loads and Load Combinations
- 3.8.1.4 Design and Analysis Procedures
- 3.8.1.5 Structural Acceptance Criteria
- 3.8.1.6 Material, Quality Control and Special Construction Techniques
- 3.8.1.7 Testing and In-service Inspection Requirements
- 3.8.2 Steel Components of the Reinforced Concrete Containment
- 3.8.2.1 Description of the Steel Containment Components
- 3.8.2.2 Applicable Codes, Standards, and Specifications
- 3.8.2.3 Loads and Load Combinations
- 3.8.2.4 Design and Analysis Procedures
- 3.8.2.5 Structural Acceptance Criteria
- 3.8.2.6 Materials, Quality Control, and Special Construction Techniques
- 3.8.2.7 Testing and In-service Inspection Requirements
- 3.8.3 Concrete and Steel Internal Structures of the Concrete Containment
- 3.8.3.1 Description of the Internal Structures
- 3.8.3.2 Applicable Codes, Standards, and Specifications
- 3.8.3.3 Loads and Load Combinations
- 3.8.3.4 Design and Analysis Procedures
- 3.8.3.5 Structural Acceptance Criteria
- 3.8.3.6 Materials, Quality Control, and Special Construction Techniques
- 3.8.3.7 Testing and In-service Inspection Requirements
- 3.8.3.8 Welding Methods and Acceptance Criteria for Structural and Building Steel
- 3.8.4 Other Seismic Category I Structures
- 3.8.4.1 Description of the Structures
- 3.8.4.2 Applicable Codes, Standards, and Specifications
- 3.8.4.3 Loads and Load Combinations
- 3.8.4.4 Design and Analysis Procedures
- 3.8.4.5 Structural Acceptance Criteria
- 3.8.5 Foundations
- 3.8.5.1 Description of the Foundations
- 3.8.5.2 Applicable Codes, Standards and Specifications
- 3.8.5.3 Loads and Load Combinations
- 3.8.5.4 Design and Analysis Procedures
- 3.8.5.5 Structural Acceptance Criteria
- 3.8.5.6 Materials, Quality Control, and Special Construction Techniques
- 3.8.5.7 Testing and In-service Inspection Requirements
- 3.8.6 COL License Information

- 3.8.6.1 Foundation Waterproofing
- 3.8.6.2 Site Specific Physical Properties and Foundation Settlement
- 3.8.6.3 Structural Integrity Pressure Result
- 3.8.6.4 Identification of Seismic Category I Structures

3.9 Mechanical Systems and Components

- 3.9.1 Special Topics for Mechanical Components
- 3.9.1.1 Design Transients
- 3.9.1.2 Computer Programs Used in Analyses
- 3.9.1.3 Experimental Stress Analysis
- 3.9.1.4 Considerations for the Evaluation of Faulted Condition
- 3.9.2 Dynamic Testing and Analysis of Systems, Components and Equipment
- 3.9.2.1 Piping Vibration, Thermal Expansion and Dynamic Effects
- 3.9.2.2 Seismic Qualification of Safety-Related Mechanical Equipment (Including Other RBV Induced Loads)
- 3.9.2.3 Dynamic Response of Reactor Internals Under Operational Flow Transients and Steady-State Conditions
- 3.9.2.4 Initial Startup Flow-Induced Vibration Testing of Reactor Internals
- 3.9.2.5 Dynamic System Analysis of Reactor Internals Under Faulted Conditions.
- 3.9.2.6 Correlations of Reactor Internals Vibration Tests with the Analytical Results
- 3.9.3 ASME Code Class 1, 2 and 3 Components, Component Supports and Core Support Structures
- 3.9.3.1 Loading Combinations, Design Transients and Stress Limits
- 3.9.3.2 Reactor Pressure Vessel Assembly
- 3.9.3.3 Main Steam (MS) System Piping
- 3.9.3.4 Other Components
- 3.9.3.5 Valve Operability Assurance
- 3.9.3.6 Design and Installation of Pressure Relief Devices
- 3.9.3.7 Component Supports
- 3.9.3.8 Other ASME III Component Supports
- 3.9.4 Control Rod Drive (CRD) System
- 3.9.4.1 Descriptive Information on CRD System
- 3.9.4.2 Applicable CRD System Design Specification
- 3.9.4.3 Design Loads and Stress Limits
- 3.9.4.4 CRD Performance Assurance Program
- 3.9.5 Reactor Pressure Vessel Internals
- 3.9.5.1 Core Support Structures
- 3.9.5.2 Internal Structures
- 3.9.5.3 Loading Conditions
- 3.9.5.4 Design Bases
- 3.9.6 In-Service Testing of Pumps and Valves
- 3.9.6.1 In-Service Testing of Safety-Related Valves
- 3.9.7 Risk-Informed In-Service Testing
- 3.9.8 Risk-Informed In-Service Inspection of Piping
- 3.9.9 COL Information
- 3.9.9.1 Reactor Internals Vibration Analysis, Measurement and Inspection Program

- 3.9.9.2 ASME Class 2 or 3 or Quality Group D Components with 60 Year Design Life
- 3.9.9.3 Pump and Valve In-Service Testing Program
- 3.9.9.4 Audit of Design Specification and Design Reports
- 3.9.10 References

3.10 Seismic and Dynamic Qualification of Mechanical and Electrical Equipment

- 3.10.1 Seismic and Dynamic Qualification Criteria
- 3.10.1.1 Selection of Qualification Method
- 3.10.1.2 Input Motion
- 3.10.1.3 Dynamic Qualification Program
- 3.10.2 Methods and Procedures for Qualifying Electrical Equipment
- 3.10.2.1 Qualification by Testing
- 3.10.2.2 Qualification by Analysis
- 3.10.2.3 Qualification by Combined Testing and Analysis
- 3.10.2.4 Qualification by Experience
- 3.10.3 Analysis or Testing of Electrical Equipment Supports
- 3.10.3.1 NSSS Electrical Equipment Supports (Other than Motors and Valve-Mounted Equipment)
- 3.10.3.2 Other Electrical Equipment Supports
- 3.10.4 Combined Operating License Information
- 3.10.5 References

3.11 Environmental Qualification of Mechanical and Electrical Equipment

- 3.11.1 Equipment Identification
- 3.11.2 Environmental Conditions
- 3.11.2.1 General Requirements
- 3.11.2.2 Qualification Program, Methods and Documentation
- 3.11.3 Loss of Heating, Ventilating and Air Conditioning
- 3.11.4 Estimated Chemical and Radiation Environment
- 3.11.5 Combined Operating License Information
- 3.11.6 References

Appendix 3A Seismic Soil-Structure Interaction Analysis

- 3A.1 Introduction
- 3A.2 ESBWR Standard Plant Site Plan
- 3A.3 Site Conditions
- 3A.3.1 Generic Site Conditions
- 3A.3.2 North Anna ESP Site Conditions
- 3A.4 Input Motion and Damping Values
- 3A.4.1 Input Motion
- 3A.4.2 Damping Values
- 3A.5 Soil-Structure Interaction Analysis Method
- 3A.6 Soil-Structure Interaction Analysis Cases
- 3A.7 Analysis Models
- 3A.7.1 Method of Dynamic Structural Model Development
- 3A.7.2 Lumped mass-Beam Stick Model for SSI Analysis

- 3A.8 Analysis Results
- 3A.9 Site Envelope Seismic Responses
- 3A.9.1 Enveloping Maximum Structural Loads
- 3A.9.2 Enveloping Floor Response Spectra

Appendix 3B Containment Hydrodynamic Loads

- 3B.1 Scope
- 3B.2 Description of Phenomena
- 3B.2.1 Loss-of-Coolant Accident
- 3B.2.1.1 Large Break Accident (Design Basis Accident)
- 3B.2.1.2 Intermediate Break Accident
- 3B.2.1.3 Small Break Accident
- 3B.2.2 Safety Relief Valve Discharge
- 3B.2.3 Depressurization Valve Actuation
- 3B.3 Pool Swell Load
- 3B.3.1 Pool Swell (PS) Analytical Model
- 3B.3.1.1 Drywell Pressurization
- 3B.3.1.2 Hydrodynamic Loads
- 3B.3.2 Pool Boundary Loads
- 3B.3.3 Structural Impact and Drag Loads Above the Pool Surface
- 3B.3.4 Vacuum Breaker Load Due to Wetwell Nitrogen Compression
- 3B.3.5 Loads on Diaphragm Floor
- 3B.4 Condensation Oscillation Loads
- 3B.4.1 ABWR Horizontal Vent Test Program
- 3B.4.1.1 Description of CO Database
- 3B.4.1.2 Evaluation of CO Database
- 3B.4.2 Source Load Approach
- 3B.4.3 Basis for ESBWR Load Definition
- 3B.4.3.1 Review of ABWR and ESBWR Containment Geometry
- 3B.4.3.2 Review of Thermal-Hydraulic Conditions
- 3B.4.3.3 Frequency Content Evaluation
- 3B.4.4 Application of the ABWR CO Load to the ESBWR
- 3B.4.5 Local Condensation Oscillation Loads
- 3B.5 Chugging Loads
- 3B.5.1 Description of Chugging Data
- 3B.5.2 Evaluation of Chugging Data
- 3B.5.3 Chugging Load Definition
- 3B.5.4 Basis for ESBWR Chugging Load Definition
- 3B.5.4.1 Review of ABWR and ESBWR Containment Geometry
- 3B.5.4.2 Review of Thermal-hydraulic Conditions
- 3B.5.4.3 Frequency Content Evaluation
- 3B.5.5 Application of the ABWR Chugging Load To The ESBWR
- 3B.5.6 Horizontal Vent Loads
- 3B.6 Safety Relief Valve Loads
- 3B.6.1 SRV Design
- 3B.6.2 SRV Discharge Load

- 3B.6.3 Pool Boundary Loads
- 3B.6.3.1 Single Valve Discharge
- 3B.6.3.2 Multiple Valve Discharge
- 3B.6.3.3 SRV Bubble Pressure (Pb)
- 3B.6.3.4 Quencher Steam Condensation Loads
- 3B.7 ESBWR Unique Design Features
- 3B.7.1 Passive Containment Cooling System
- 3B.7.1.1 PCCS Pool Swell Loads
- 3B.7.1.2 PCCS Condensation Loads
- 3B.7.2 Gravity-Driven Cooling System
- 3B.7.3 Lower Drywell Spillover Pipes
- 3B.8 Submerged Structure Loads
- 3B.8.1 Pool Swell Submerged Structure Loads
- 3B.8.2 CO Submerged Structure Loads
- 3B.8.3 CH Submerged Structure Loads
- 3B.8.4 SRV Submerged Structure Load
- 3B.8.5 PCCS Vent Discharge Load
- 3B.9 Load Combinations
- 3B 10 References

Appendix 3C Computer Programs Used In The Design and Analysis of Seismic Category I Structures

- 3C.1 Introduction
- 3C.2 Static and Dynamic Structural Analysis Program (NASTRAN)
- 3C.2.1 Description
- 3C.2.2 Validation
- 3C.2.3 Extent of Application
- 3C.3 ABAQUS and ANACAP-U
- 3C.3.1 Description
- 3C.3.2 Validation
- 3C.3.3 Extent of Application
- 3C.4 Concrete Element Cracking Analysis Program (SSDP-2D)
- 3C.4.1 Description
- 3C.4.2 Validation
- 3C.4.3 Extent of Application
- 3C.1 Heat Transfer Analysis Program (TEMCOM2)
- 3C.4.4 Description
- 3C.4.5 Validation
- 3C.4.6 Extent of Application
- 3C.5 Static and Dynamic Structural Analysis Systems: ANSYS
- 3C.5.1 Description
- 3C.5.2 Validation
- 3C.5.3 Extent of Application
- 3C.6 Soil-Structure Interaction
- 3C.6.1 Dynamic Soil-Structure Interaction Analysis Program—DAC3N
- 3C.6.1.1 Description

- 3C.6.1.2 Validation
- 3C.6.1.3 Extent of Application

Appendix 3D Computer Programs Used In The Design of Components, Equipment and Structures

- 3D.1 Introduction
- 3D.2 Fine Motion Control Rod Drive
- 3D.2.1 Fine Motion Control Rod Drive FMCRD01
- 3D.2.2 Structural Analysis Programs
- 3D.3 Reactor Pressure Vessel and Internals
- 3D.4 Piping
- 3D.4.1 Piping Analysis Program PISYS
- 3D.4.2 Component Analysis ANSI7
- 3D.4.3 Area Reinforcement NOZAR
- 3D.4.4 Dynamic Forcing Functions
- 3D.4.4.1 Relief Valve Discharge Pipe Forces Computer Program RVFOR
- 3D.4.4.2 Turbine Stop Valve Closure TSFOR
- 3D.4.4.3 Hydraulic Transients-RELAP5/Mod 3.3
- 3D.4.4.4 Subcompartment Pressurization Contain 2.0
- 3D.4.5 Integral Attachment LUGST
- 3D.4.6 Response Spectra Generation
- 3D.4.6.1 ERSIN Computer Program
- 3D.4.6.2 RINEX Computer Program
- 3D.4.7 Piping Dynamic Analysis Program PDA
- 3D.4.8 Thermal Transient Program LION
- 3D.4.9 Engineering Analysis System ANSYS05
- 3D.4.10 Piping Analysis Program EZPYP
- 3D.4.11 Differential Displacement Program DISPL
- 3D.5 Pumps and Motors
- 3D.5.1 Structural Analysis Program SAP4G07
- 3D.5.2 Effects of Flange Joint Connections FTFLG01
- 3D.6 Heat Exchangers
- 3D.6.1 Structural Analysis Program SAP4G07
- 3D.6.2 Calculation of Shell Attachment Parameters and Coefficients BILDR01
- 3D.7 References

Appendix 3E Guideline For Leak Before Break Applications

- 3E.1 Introduction
- 3E.1.1 Material Selection Guidelines
- 3E.1.2 Deterministic Evaluation Procedure
- 3E.2 Material Fracture Toughness Characterization
- 3E.2.1 Fracture Toughness Characterization
- 3E.2.2 Carbon Steels and Associated Welds
- 3E.2.2.1 Fracture Toughness Test Program
- 3E.2.2.2 Material (J/T) Curve Selection
- 3E.2.3 Stainless Steels and Associated Welds

- 3E.3 Fracture Mechanics Methods
- 3E.3.1 Elastic-Plastic Fracture Mechanics or (J/T) Methodology
- 3E.3.1.1 Basic (J/T) Methodology
- 3E.3.1.2 J Estimation Scheme Procedure
- 3E.3.1.3 Tearing Instability Evaluation Considering Both the Membrane and Bending Stresses
- 3E.3.2 Application of (J/T) Methodology to Carbon Steel Piping
- 3E.3.2.1 Determination of Ramberg-Osgood Parameters for 550°F Evaluation
- 3E.3.2.2 Determination of Ramberg-Osgood Parameters for 420°F Evaluation
- 3E.3.3 Modified Limit Load Methodology for Austenitic Stainless Steel Piping
- 3E.3.4 Bimetallic Welds
- 3E.4 Leak Rate Calculation Methods
- 3E.4.1 Leak Rate Estimation for Pipes Carrying Water
- 3E.4.1.1 Description of Basis for Flow Rate Calculation
- 3E.4.1.2 Basic for Crack Opening Area Calculation
- 3E.4.1.3 Comparison Verification with Experimental Data
- 3E.4.2 Flow Rate Estimation for Saturated Steam
- 3E.4.2.1 Evaluation Method
- 3E.4.2.2 Selection of Appropriate Friction Factor
- 3E.4.2.3 Crack Opening Area Formulation
- 3E.5 Leak Detection Capabilities
- 3E.6 References

Appendix 3F Response of Structures To Containment Loads

- 3F.1 Scope
- 3F.2 Dynamic Response
- 3F.2.1 Classification of Analytical Procedure
- 3F.2.2 Analysis Models
- 3F.2.3 Load Application
- 3F.2.4 Analysis Method
- 3F.3 Hydrodynamic Load Analysis Results

Appendix 3G Design Details and Evaluation Results of Seismic Category I Structures

- 3G.1 Reactor Building
- 3G.1.1 Objective and Scope
- 3G.1.2 Conclusions
- 3G.1.3 Structural Description
- 3G.1.3.1 Description of the Reactor Building
- 3G.1.4 Analytical Models
- 3G.1.4.1 Structural Models
- 3G.1.4.2 Foundation Models
- 3G.1.5 Structural Analysis and Design
- 3G.1.5.1 Site Design Parameters
- 3G.1.5.2 Design Loads, Load Combinations, and Material Properties
- 3G.1.5.3 Stability Requirements
- 3G.1.5.4 Structural Design Evaluation
- 3G.1.5.5 Foundation Stability

- 3G.1.5.6 Tornado Missile Evaluation
- 3G.1.6 References
- 3G.2 Control Building
- 3G.2.1 Objective and Scope
- 3G.2.2 Conclusions
- 3G.2.3 Structural Description
- 3G.2.4 Analytical Models
- 3G.2.4.1 Structural Model
- 3G.2.4.2 Foundation Models
- 3G.2.5 Structural Analysis and Design
- 3G.2.5.1 Site Design Parameters
- 3G.2.5.2 Design Loads, Load Combinations, and Material Properties
- 3G.2.5.3 Stability Requirements
- 3G.2.5.4 Structural Design Evaluation
- 3G.2.5.5 Foundation Stability
- 3G.2.5.6 Tornado Missile Evaluation
- 3G.3 Fuel Building
- 3G.3.1 Objective and Scope
- 3G.3.2 Conclusions
- 3G.3.3 Structural Description
- 3G.3.4 Analytical Models
- 3G.3.5 Structural Analysis and Design
- 3G.3.5.1 Site Design Parameters
- 3G.3.5.2 Design Loads, Load Combinations, and Material Properties
- 3G.3.5.3 Stability Requirements
- 3G.3.5.4 Structural Design Evaluation
- 3G.3.5.5 Foundation Stability
- 3G.3.5.6 Tornado Missile Evaluation

Appendix 3H Equipment Qualification Design Environmental Conditions

- 3H.1 Introduction
- 3H.2 Plant Zones
- 3H.2.1 Containment Vessel
- 3H.2.2 Outside Containment Vessel
- 3H.3 Environmental Conditions
- 3H.3.1 Plant Normal Operating Conditions
- 3H.3.2 Accident Conditions
- 3H.3.3 Water Quality
- 3H.4 references

Appendix 3I Designated NEDE-24326-1-P Material Which May Not Change Without Prior NRC Approval

- 3I.1 General Requirements for Dynamic Testing
- 3I.2 Product and Assembly Testing
- 3I.3 Multiple-Frequency Tests
- 3I.4 Single- and Multi-axis Tests

- 3I.5 Single Frequency Tests
- 3I.6 Damping
- 3I.7 Qualification Determination
- 3I.8 Dynamic Qualification by Analysis
- 3I.9 Required Response Spectra
- 3I.10 Time History Analysis
- 3I.11 References

Appendix 3J Evaluation of Postulated Ruptures in High Energy Pipes

- 3J.1 Background and Scope
- 3J.2 Identification of Rupture Locations and Rupture Geometry
- 3J.2.1 Ruptures in Containment Penetration Area.
- 3J.2.2 Ruptures in Areas other than Containment Penetration.
- 3J.2.3 Determine the Type of Pipe Break
- 3J.3 Design and Selection of Pipe Whip Restraints
- 3J.3.1 Make Preliminary Selection of Pipe Whip Restraint
- 3J.3.2 Prepare Simplified Computer Model of Piping-Pipe Whip Restraint System.
- 3J.3.3 Run Pipe Dynamic Analysis
- 3J.3.4 Select Pipe Whip Restraint for Pipe Whip Restraint Analysis
- 3J.4 Pipe Rupture Evaluation
- 3J.4.1 General Approach
- 3J.4.2 Procedure For Dynamic Time-History Analysis With Simplified Model
- 3J.4.2.1 Modeling of Piping System
- 3J.4.2.2 Dynamic Analysis of Simplified Piping Model
- 3J.4.3 Procedure For Dynamic Time-History Analysis Using Detailed Piping Model
- 3J.4.3.1 Modeling of Piping System
- 3J.4.3.2 Dynamic Analysis using Detail Piping Model
- 3J.5 Jet Impingement on Essential Piping

Appendix 3K Resolution Of Intersystem Loss Of Coolant Accident

- 3K.1 Introduction
- **3K.2 Regulatory Positions**
- 3K.3 Boundary Limits of Ultimate Rupture Strength
- 3K.4 Evaluation Procedure
- 3K.5 Systems Evaluated
- 3K.6 Piping Design Pressure for Ultimate Rupture Strength Compliance
- 3K.7 Applicability of Ultimate Rupture Strength Non-piping Components
- 3K.8 Results
- 3K.9 Valve Misalignment Due To Operator Error
- 3K.10 Additional Operational Considerations
- 3K.11 Summary
- 3K.12 References

3KA. Ultimate Rupture Strength System Boundary Evaluations

- 3KA.1 Control Rod Drive System (CRD)
- 3KA.2 Standby Liquid Control System (SLC)

- 3KA.3 Reactor Water Cleanup/Shutdown Cooling (RWCU/SDC) System
- 3KA.4 Fuel And Auxiliary Pools Cooling System (FAPCS)
- 3KA.5 Nuclear Boiler System (NBS)
- 3KA.6 Condensate STORAge and transfer system (CS&TS).
- 3KA.7 Makeup WATer system (MWS)
- 3KA.8 Radwaste system (LCw Receiving & how receiving tanks)
- 3KA.9 Condensate and feedwater system (CFS)
- 3KA.10 Process sampling system (PSS)

4. Reactor

4.1 Summary Description

- 4.1.1 Reactor Pressure Vessel
- 4.1.2 Reactor Internal Components
- 4.1.3 Reactivity Control Systems
- 4.1.4 Analysis Techniques
- 4.1.5 COL Information
- 4.1.6 References

4.2 Fuel System Design

- 4.2.1 Design Bases
- 4.2.2 Description and Design Drawings
- 4.2.3 Design Evaluation
- 4.2.4 Testing, Inspection, and Surveillance Plans
- 4.2.5 COL Information
- 4.2.6 References

4.3 Nuclear Design

- 4.3.1 Design Basis
- 4.3.2 Description
- 4.3.3 Analytical Methods
- 4.3.4 Changes
- 4.3.5 COL Information
- 4.3.6 References

4.4 Thermal and Hydraulic Design

- 4.4.1 Design Basis
- 4.4.2 Description of the Thermal-Hydraulic Design of the Reactor Core
- 4.4.3 Description of the Thermal-Hydraulic Design of the Reactor Coolant System
- 4.4.4 Loose-Parts Monitoring System
- 4.4.5 Evaluation
- 4.4.6 Testing and Verification
- 4.4.7 COL Information
- 4.4.8 References

4.5 Reactor Materials

- 4.5.1 Control Rod Drive System Structural Materials
- 4.5.2 Reactor Internal Materials
- 4.5.3 COL Information
- 4.5.4 References

4.6 Functional Design of Reactivity Control System

- 4.6.1 Information for Control Rod Drive System
- 4.6.2 Evaluations of the CRD System
- 4.6.3 Testing and Verification of the CRDs

- 4.6.4 Information for Combined Performance of Reactivity Control Systems
- 4.6.5 Evaluation of Combined Performance
- 4.6.6 COL Information
- 4.6.7 References

4A Typical Control Rod Patterns and Associated Power Distribution for ESBWR

- 4A.1 Introduction
- 4A.2 Results of Core Simulation Studies
- 4A.3 COL Information

Appendix 4B Fuel Licensing Acceptance Criteria

- 4B.1 General Criteria
- 4B.2 Thermal-Mechanical
- 4B.3 Nuclear
- 4B.4 Hydraulic
- 4B.5 Operating Limit MCPR
- 4B.6 Critical Power Correlation
- 4B.7 Stability
- 4B.8 Overpressure Protection Analysis
- 4B.9 Refueling Accident Analysis
- 4B.10 Anticipated Transient Without Scram
- 4B.11 COL Information
- 4B.12 References

Appendix 4C Control Rod Licensing Acceptance Criteria

- 4C.1 General Criteria
- 4C.2 Basis for Acceptance Criteria
- 4C.3 COL Information

Appendix 4D Stability Evaluation

- 4D.1 Stability Performance During Power Operation
- 4D.1.1 Stability Criteria
- 4D.1.2 Analysis Methods
- 4D.1.3 Steady State Stability Performance
- 4D.1.4 Statistical Analysis of ESBWR Stability
- 4D.1.5 Stability Performance During AOOs
- 4D.1.6 Stability Performance During Anticipated Transients Without Scram
- 4D.2 Stability Performance During Plant Startup
- 4D.2.1 Phenomena Governing Oscillations during Startup
- 4D.2.2 TRACG Analysis of Typical Startup Trajectories
- 4D.3 COL Information
- 4D 4 References

5. Reactor Coolant System and Connected Systems

5.1 Summary Description

- 5.1.1 Schematic Flow Diagrams
- 5.1.2 Piping and Instrumentation Schematics
- 5.1.3 Elevation Schematics

5.2 Integrity of Reactor Coolant Pressure Boundary

- 5.2.1 Compliance with Codes and Code Cases
- 5.2.1.1 Compliance with 10 CFR 50, Section 50.55a
- 5.2.1.2 Applicable Code Cases
- 5.2.2 Overpressure Protection
- 5.2.2.1 Design Basis
- 5.2.2.2 System Description
- 5.2.2.3 Safety Evaluation
- 5.2.2.4 Testing and Inspection Requirements
- 5.2.2.5 Instrumentation Requirements
- 5.2.3 Reactor Coolant Pressure Boundary Materials
- 5.2.3.1 Material Specifications
- 5.2.3.2 Compatibility with Reactor Coolant
- 5.2.3.3 Fabrication and Processing of Ferritic Materials
- 5.2.3.4 Fabrication and Processing of Austenitic Stainless Steels
- 5.2.4 Preservice and Inservice Inspection and Testing of Reactor Coolant Pressure Boundary
- 5.2.4.1 Class 1 System Boundary
- 5.2.4.2 Accessibility
- 5.2.4.3 Examination Categories and Methods
- 5.2.4.4 Inspection Intervals
- 5.2.4.5 Evaluation of Examination Results
- 5.2.4.6 System Leakage and Hydrostatic Pressure Tests
- 5.2.4.7 Code Exemptions
- 5.2.4.8 Code Cases
- 5.2.5 Reactor Coolant Pressure Boundary (RCPB) Leakage Detection
- 5.2.5.1 Leakage Detection Methods
- 5.2.5.2 Leak Detection Instrumentation and Monitoring
- 5.2.5.3 Display and Indications in the Main Control Room
- 5.2.5.4 Limits for Reactor Coolant Leakage Rates Within the Drywell
- 5.2.5.5 Criteria to Evaluate the Adequacy and Margin of Leak Detection System
- 5.2.5.6 Separation of Identified and Unidentified Leakages in the Containment
- 5.2.5.7 Testing, Calibration and Inspection Requirements
- 5.2.5.8 Regulatory Guide 1.45 Compliance
- 5.2.6 COL Information
- 5.2.7 References

5.3 Reactor Vessel

- 5.3.1 Reactor Vessel Materials
- 5.3.1.1 Materials Specifications

- 5.3.1.2 Special Procedures Used for Manufacturing and Fabrication
- 5.3.1.3 Special Methods for Nondestructive Examination
- 5.3.1.4 Special Controls for Ferritic and Austenitic Stainless Steels
- 5.3.1.5 Fracture Toughness
- 5.3.1.6 Material Surveillance
- 5.3.1.7 Regulatory Guide 1.65
- 5.3.2 Pressure/Temperature Limits
- 5.3.2.1 Limit Curves
- 5.3.2.2 Operating Procedures
- 5.3.3 Reactor Vessel Integrity
- 5.3.3.1 Design Bases
- 5.3.3.2 Description
- 5.3.3.3 Materials of Construction
- 5.3.3.4 Inspection Requirements
- 5.3.3.5 Shipment and Installation
- 5.3.3.6 Operating Conditions
- 5.3.3.7 In-service Surveillance
- 5.3.4 COL Information
- 5 3 5 References

5.4 Component and Subsystem Design

- 5.4.1 Reactor Recirculation System
- 5.4.1.1 Pump Flywheel Integrity (PWR)
- 5.4.2 Steam Generators (PWR)
- 5.4.2.1 Steam Generator Materials
- 5.4.2.2 Steam Generator Tube Inservice Inspection
- 5.4.3 Reactor Coolant Piping
- 5.4.4 Main Steamline Flow Restrictors
- 5.4.4.1 Safety Design Bases
- 5.4.4.2 Description
- 5.4.4.3 Safety Evaluation
- 5.4.4.4 Inspection and Testing
- 5.4.4.5 Instrumentation Requirements
- 5.4.5 Main Steamline Isolation System
- 5.4.5.1 Design Bases
- 5.4.5.2 System Description
- 5.4.5.3 Safety Evaluation
- 5.4.5.4 Testing and Inspection Requirements
- 5.4.5.5 Instrumentation Requirements
- 5.4.6 Isolation Condenser System (ICS)
- 5.4.6.1 Safety Design Bases
- 5.4.6.2 System Description
- 5.4.6.3 Safety Evaluation
- 5.4.6.4 Testing and Inspection Requirements
- 5.4.6.5 Instrumentation Requirements
- 5.4.7 Residual Heat Removal System

ESBWR

- 5.4.8 Reactor Water Cleanup/Shutdown Cooling System
- 5.4.8.1 Reactor Water Cleanup Function
- 5.4.8.2 Shutdown Cooling Function
- 5.4.9 Main Steamlines and Feedwater Piping
- 5.4.9.1 Design Bases
- 5.4.9.2 Description
- 5.4.9.3 Safety Evaluation
- 5.4.9.4 Testing and Inspection Requirements
- 5.4.9.5 Instrumentation Requirements
- 5.4.10 Pressurizer
- 5.4.11 Pressurizer Relief Discharge System
- 5.4.12 Reactor Coolant System High Point Vents
- 5.4.13 Safety/Relief Valves
- 5.4.14 Component Supports
- 5.4.14.1 Safety Design Bases
- 5.4.14.2 Description
- 5.4.14.3 Safety Evaluation
- 5.4.14.4 Testing and Inspection Requirements
- 5.4.14.5 Instrumentation Requirements
- 5.4.15 COL Information
- 5.4.16 References

6. Engineered Safety Features

6.0 General

6.1 Engineered Safety Feature Materials

- 6.1.1 Metallic Materials
- 6.1.1.1 Materials Selection and Fabrication
- 6.1.1.2 Compatibility of Construction Materials with Core Cooling Water and Containment Sprays
- 6.1.1.3 Controls for Austenitic Stainless Steel
- 6.1.1.4 Composition, Compatibility and Stability of Containment and Core Coolants
- 6.1.2 Organic Materials
- 6.1.2.1 Protective Coatings
- 6.1.2.2 Other Organic Materials
- 6.1.2.3 Evaluation
- 6.1.3 COL Information
- 6.1.3.1 Protective Coatings and Organic Materials
- 6.1.4 References

6.2 Containment Systems

- 6.2.1 Containment Functional Design
- 6.2.1.1 Pressure Suppression Containment
- 6.2.1.2 Containment Subcompartments
- 6.2.1.3 Mass and Energy Release Analyses for Postulated Loss-of-Coolant Accidents
- 6.2.1.4 Mass and Energy Release Analysis for Postulated Secondary System Pipe Ruptures Inside Containment (PWR)
- 6.2.1.5 Maximum Containment Pressure Analysis for Performance Capability Studies on Emergency Core Cooling System (PWR)
- 6.2.1.6 Testing and Inspection
- 6.2.1.7 Instrumentation Requirements
- 6.2.2 Passive Containment Cooling System
- 6.2.2.1 Design Basis
- 6.2.2.2 System Description
- 6.2.2.3 Design Evaluation
- 6.2.2.4 Testing and Inspection Requirements
- 6.2.2.5 Instrumentation Requirements
- 6.2.3 Reactor Building Functional Design
- 6.2.3.1 Design Bases
- 6.2.3.2 Design Description
- 6.2.3.3 Design Evaluation
- 6.2.3.4 Tests and Inspections
- 6.2.3.5 Instrumentation Requirements
- 6.2.4 Containment Isolation Function
- 6.2.4.1 Design Bases
- 6.2.4.2 System Design
- 6.2.4.3 Design Evaluation

- 6.2.4.4 Test and Inspections
- 6.2.5 Combustible Gas Control in Containment
- 6.2.5.1 Design Bases
- 6.2.5.2 Containment Inerting System
- 6.2.5.3 Containment Atmosphere Monitoring
- 6.2.5.4 Containment Overpressure Protection
- 6.2.5.5 Post Accident Radiolytic Oxygen Generation
- 6.2.6 Containment Leakage Testing
- 6.2.6.1 Containment Integrated Leakage Rate Test (Type A)
- 6.2.6.2 Containment Penetration Leakage Rate Test (Type B)
- 6.2.6.3 Containment Isolation Valve Leakage Rate Test (Type C)
- 6.2.6.4 Scheduling and Reporting of Periodic Tests
- 6.2.6.5 Special Testing Requirements
- 6.2.7 Fracture Prevention of Containment Pressure Boundary
- 6.2.8 COL Information
- 6.2.8.1 Administrative Control Maintaining Containment Isolation
- 6.2.8.2 Wetwell-to-Drywell Vacuum Breaker Protection
- 6.2.8.3 Containment Penetration Leakage Rate Test (Type B)
- 629 References

6.3 Emergency Core Cooling Systems

- 6.3.1 Design Bases and Summary Description
- 6.3.1.1 Design Bases
- 6.3.1.2 Summary Descriptions of ECCS
- 6.3.2 System Design
- 6.3.2.1 Equipment and Component Descriptions
- 6.3.2.2 Applicable Codes and Classifications
- 6.3.2.3 Materials Specifications and Compatibility
- 6.3.2.4 System Reliability
- 6.3.2.5 Protection Provisions
- 6.3.2.6 Manual Actions
- 6.3.2.7 Gravity-Driven Cooling System
- 6.3.2.8 Automatic Depressurization System
- 6.3.2.9 Isolation Condenser System
- 6.3.2.10 Standby Liquid Control System
- 6.3.3 ECCS Performance Evaluation
- 6.3.3.1 ECCS Bases for Technical Specifications
- 6.3.3.2 Acceptance Criteria for ECCS Performance
- 6.3.3.3 Single-Failure Considerations
- 6.3.3.4 System Performance During the Accident
- 6.3.3.5 Use of Dual Function Components for ECCS
- 6.3.3.6 Limits on ECCS Parameters
- 6.3.3.7 ECCS Performance Analysis for LOCA
- 6.3.3.8 ECCS-LOCA Performance Analysis Conclusions
- 6.3.3.9 ECCS Performance Tests
- 6.3.3.10 Reliability Tests and Inspections

- 6.3.4 Instrumentation Requirements
- 6.3.5 Combined Operating License Information
- 6.3.5.1 ECCS Performance Results
- 6.3.5.2 ECCS Testing Requirements
- 6.3.5.3 Limiting Break Results
- 6.3.6 References

6.4 Control Room Habitability Systems

- 6.4.1 Design Bases
- 6.4.1.1 Safety Design Basis
- 6.4.1.2 Power Generation Design Bases
- 6.4.2 System Design
- 6.4.3 Control Room Habitability Area
- 6.4.4 System Operation Procedures
- 6.4.5 Design Evaluations
- 6.4.6 Life Support
- 6.4.7 Testing and Inspection
- 6.4.8 Instrumentation Requirements
- 6.4.9 COL Information
- 6.4.10 References

6.5 Atmosphere Cleanup Systems

- 6.5.1 Containment Spray Systems
- 6.5.2 Fission Product Control Systems and Structures
- 6.5.2.1 General
- 6.5.2.2 Containment
- 6.5.2.3 Reactor Building
- 6.5.2.4 Radwaste Building
- 6.5.2.5 Turbine Building
- 6.5.3 Ice Condenser as a Fission Product Control System
- 6.5.4 Suppression Pool as a Fission Product Cleanup System
- 6.5.5 COL Information
- 6.5.6 References

6.6 Preservice and Inservice Inspection and Testing of Class 2 and 3 Components and Piping

- 6.6.1 Class 2 and 3 System Boundaries
- 6.6.1.1 Class 2 System Boundary Description
- 6.6.1.2 Class 3 System Boundary Description
- 6.6.2 Accessibility
- 6.6.3 Examination Categories and Methods
- 6.6.3.1 Examination Categories
- 6.6.3.2 Examination Methods
- 6.6.4 Inspection Intervals
- 6.6.5 Evaluation of Examination Results
- 6.6.6 System Pressure Tests

ESBWR

- 6.6.6.1 System Leakage Test
- 6.6.6.2 Hydrostatic Pressure Tests
- 6.6.7 Augmented Inservice Inspections
- 6.6.8 Code Exemptions
- 6.6.9 Code Cases
- 6.6.10 COL Information
- 6.6.11 References

7. Instrumentation And Control Systems

7.1 Introduction

- 7.1.1 Identification of I&C Systems
- 7.1.2 Identification of Design Bases and Safety Criteria
- 7 1 3 COL Information
- 7.1.4 References

7.2 Reactor Trip System

- 7.2.1 Reactor Protection System
- 7.2.2 Neutron Monitoring System
- 7.2.3 Suppression Pool Temperature Monitoring
- 7.2.4 COL Information
- 7.2.5 References

7.3 Engineered Safety Features Systems

- 7.3.1 Emergency Core Cooling System
- 7.3.2 Passive Containment Cooling System
- 7.3.3 Leak Detection and Isolation System
- 7.3.4 Safety System Logic and Control
- 7.3.5 COL Information
- 7.3.6 References

7.4 Safety-Related and Nonsafety-Related Shutdown Systems

- 7.4.1 Standby Liquid Control System
- 7.4.2 Remote Shutdown System
- 7.4.3 Reactor Water Cleanup/Shutdown Cooling System
- 7.4.4 Isolation Condenser System
- 7.4.5 COL Information
- 7.4.6 References

7.5 Safety-Related And Nonsafety-Related Information Systems

- 7.5.1 General I&C Conformance to Regulatory Guide 1.97
- 7.5.2 Containment Monitoring System
- 7.5.3 Process Radiation Monitoring System
- 7.5.4 Area Radiation Monitoring System
- 7.5.5 Pool Monitoring Subsystems
- 7.5.6 Wetwell-to-Drywell Vacuum Breaker Monitoring
- 7.5.7 COL Information
- 7.5.8 References

7.6 Interlock Systems

- 7.6.1 HP/LP System Interlock Function
- 7.6.2 Other Interlocks
- 7.6.3 COL Information
- 7.6.4 References

7.7 Control Systems

- 7.7.1 Nuclear Boiler System
- 7.7.2 Rod Control and Information System
- 7.7.3 Feedwater Control System
- 7.7.4 Plant Automation System
- 7.7.5 Steam Bypass and Pressure Control System
- 7.7.6 Neutron Monitoring System Nonsafety-Related Subsystems
- 7.7.7 Containment Inerting System
- 7.7.8 COL Information
- 7.7.9 References

7.8 Diverse Instrumentation and Control Systems

- 7.8.1 System Description
- 7.8.2 Common Mode Failure Defenses within Safety System Design
- 7.8.3 Specific Regulatory Requirements Conformance
- 7.8.4 COL Information
- 7.8.5 References

7.9 Data Communication Systems

- 7.9.1 Essential Distributed Control and Information System (E-DCIS)
- 7.9.2 Non-Essential Distributed Control and Information System (NE-DCIS)

Appendix 7A Fixed In-Core Calibration System for the Neutron Monitoring System

- 7A.1 Introduction
- 7A.1.1 Objectives
- 7A.1.2 Principles of the Gamma Thermometer
- 7A.1.3 Summary of Gamma Thermometer Application in All BWRs
- 7A.2 Gamma Thermometer System Definition
- 7A.2.1 Hardware Description
- 7A.2.2 Software Description
- 7A.3 Gamma Thermometer System Functions
- 7A.3.1 LPRM Calibration
- 7A.3.2 Core Monitoring with Gamma Thermometers
- 7A.4 Prior Experience with Gamma Thermometers
- 7A.4.1 Nuclear Industry Experience
- 7A.4.2 BWR Experience
- 7A.5 Uncertainty Analysis
- 7A.5.1 GT Adaptive Core Monitoring Accuracy
- 7A.5.2 Estimated Bundle Power Uncertainty
- 7A.6 Conclusions
- 7A.7 References

Appendix 7B Software Quality Program for Hardware/Software Design and Development

- 7B.1 Software Quality Assurance Program
- 7B.2 Software Management Plan

ESBWR

- 7B.3 Software Development Project Plan
- 7B.4 Software Configuration management plan
- 7B.5 Verification and Validation Plan
- 7B.6 Software Safety Plan
- 7B.7 Software Test Plan
- 7B.8 Operational and Maintenance Manual (O&M Manual)
- 7B.9 Training Plan
- 7B.10 References

8. Electric Power

8.1 Introduction

- 8.1.1 General
- 8.1.2 Utility Power Grid and Off-site Systems Description
- 8.1.2.1 Utility Power Grid Description
- 8.1.2.2 Off-site Power System Description
- 8.1.3 On-site Electric Power System
- 8.1.3.1 On-site AC Power System
- 8.1.3.2 On-site DC Power System
- 8.1.4 Safety-Related Loads
- 8.1.5 Design Basis
- 8.1.5.1 Off-site Power
- 8.1.5.2 On-site Power
- 8.1.6 COL Information
- 8.1.6.1 Utility Power Grid Description
- 8.1.6.2 Offsite Power System Description
- 8.1.6.3 Compliance to Regulatory Requirements and Guidelines
- 8.1.7 References

8.2 Off-site Power Systems

- 8.2.1 Description
- 8.2.1.1 Transmission System
- 8.2.1.2 Off-site Power System
- 8.2.2 Analysis
- 8.2.3 Design Bases (Interface Requirements)
- 8.2.4 COL Information
- 8.2.4.1 Transmission System Description
- 8.2.4.2 Switchyard Description
- 8.2.4.3 Normal Preferred Power
- 8.2.4.4 Alternate Preferred Power
- 8.2.4.5 Unit Synchronization
- 8.2.4.6 Protective Relaying
- 8.2.4.7 Switchyard DC Power
- 8.2.4.8 Switchvard AC Power
- 8.2.4.9 Transformer Protection
- 8.2.4.10 Stability of Off-Site Power Systems
- 8.2.4.11 Transmission System Reliability
- 8.2.4.12 Generator Circuit Breaker
- 8.2.4.13 Degraded Voltage
- 8.2.4.14 Interface Requirements
- 8.2.5 References

8.3 On-site Power Systems

- 8.3.1 AC Power Systems
- 8.3.1.1 Description

- 8.3.1.2 Analysis
- 8.3.1.3 Physical Identification of Safety-Related Equipment
- 8.3.1.4 Independence of Redundant Systems
- 8.3.2 DC Power Systems
- 8.3.2.1 Description
- 8.3.2.2 Analysis
- 8.3.3 Fire Protection of Cable Systems
- 8.3.3.1 Resistance of Cables to Combustion
- 8.3.3.2 Cables and Raceways
- 8.3.3.3 Localization of Fires
- 8.3.3.4 Fire Detection and Protection Systems
- 8.3.4 COL Information
- 8.3.4.1 Interrupting Capacity of Electrical Distribution Equipment
- 8.3.4.2 Defective Refurbished Circuit Breakers
- 8.3.4.3 Non-safety Standby Diesel Generator Load Table Changes
- 8.3.4.4 Minimum Starting Voltages for Class 1E Motors
- 8.3.4.5 Certified Proof Tests on Cable Samples
- 8.3.4.6 Associated Circuits
- 8.3.4.7 Electrical Penetration Assemblies
- 8.3.4.8 DC Voltage Analysis
- 8.3.4.9 Administrative Controls for Bus Grounding Circuit Breakers
- 8.3.4.10 Testing of Thermal Overload Bypass Contacts for Motor Operated Valves
- 8.3.4.11 Emergency Operating Procedures for Station Blackout
- 8.3.4.12 Periodic Testing of Power and Protection Systems
- 8.3.4.13 Common Industrial Standards Referenced in Purchase Specifications
- 8.3.4.14 Periodic testing of batteries
- 8.3.4.15 Regulatory Guide 1.160
- 8.3.5 Additional Industry Standards
- 8.3.6 References

Appendix 8A Miscellaneous Electrical Systems

- 8A.1 Station Grounding and Surge Protection
- 8A.1.1 Description
- 8A.1.2 Analysis
- 8A.1.3 COL Information
- 8A.2 Cathodic Protection
- 8A.2.1 Description
- 8A.2.2 Analysis
- 8A.2.3 COL Information
- 8A.3 Electric Heat Tracing
- 8A.3.1 Description
- 8A.3.2 Analysis
- 8A.3.3 COL Information
- 8A.4 References

ESBWR

Appendix 8B Realistic Station Blackout Evaluation

8B.1 Introduction

8B.2 Acceptance Criteria

8B.3 Analysis Assumptions

8B.4 Analysis Results

9. Auxiliary Systems

9.1 Fuel Storage and Handling

- 9.1.1 New Fuel Storage
- 9.1.2 Spent Fuel Storage
- 9.1.3 Fuel and Auxiliary Pools Cooling System
- 9.1.4 Light Load Handling System (Related to Refueling)
- 9.1.5 Overhead Heavy Load Handling Systems (OHLHS)
- 9.1.6 COL Information
- 9.1.7 References

9.2 Water Systems

- 9.2.1 Plant Service Water System
- 9.2.2 Reactor Component Cooling Water System
- 9.2.3 Makeup Water System
- 9.2.4 Potable and Sanitary Water Systems
- 9.2.5 Ultimate Heat Sink
- 9.2.6 Condensate Storage and Transfer System
- 9.2.7 Chilled Water System
- 9.2.8 Turbine Component Cooling Water System
- 9.2.9 COL Information
- 9.2.10 References

9.3 Process Auxiliaries

- 9.3.1 Compressed Air Systems
- 9.3.2 Process Sampling System
- 9.3.3 Equipment and Floor Drainage System
- 9.3.4 Chemical and Volume Control System
- 9.3.5 Standby Liquid Control System
- 9.3.6 Instrument Air System
- 9.3.7 Service Air System
- 9.3.8 High Pressure Nitrogen Supply System
- 9.3.9 Hydrogen Water Chemistry System
- 9.3.10 Oxygen Injection System
- 9.3.11 Zinc Injection System
- 9.3.12 Auxiliary Boiler System
- 9.3.13 COL Information
- 9.3.14 References

9.4 Air Conditioning, Heating, Cooling, and Ventilation

- 9.4.1 Control Room Area Ventilation System
- 9.4.2 Fuel Building HVAC System (FBHVS)
- 9.4.3 Radwaste Building Heating, Ventilation and Air Conditioning System
- 9.4.4 Turbine Building HVAC System
- 9.4.5 Engineered Safety Feature Ventilation System
- 9.4.6 Reactor Building HVAC System

- 9.4.7 Electrical Building HVAC System
- 9.4.8 Drywell Cooling System
- 9.4.7 Containment Inerting System
- 9.4.8 COL Information
- 9.4.9 References

9.5 Other Auxiliary Systems

- 9.5.1 Fire Protection System
- 9.5.2 Communications Systems
- 9.5.3 Lighting System
- 9.5.4 Diesel Generator Fuel Oil Storage and Transfer System
- 9.5.5 Diesel Generator Jacket Cooling Water System
- 9.5.6 Diesel Generator Starting Air System
- 9.5.7 Diesel Generator Lubrication System
- 9.5.8 Diesel Generator Combustion Air Intake and Exhaust System
- 9.5.9 COL Information
- 9.5.10 References

Appendix 9A. Fire Hazards Analysis

- 9A.1 Introduction
- 9A.2 Analysis Criteria
- 9A.2.1 Codes and Standards
- 9A.2.2 Fire Area Separation and Fire Equipment Drawings
- 9A.2.3 Terminology
- 9A.2.4 Acceptance Criteria
- 9A.2.5 Systems Required in the Case of Fire to Achieve Safe Shutdown
- 9A.3 Analysis Approach
- 9A.3.1 Review Data
- 9A.3.2 Steam Tunnel Barrier Exception
- 9A.3.3 Exceptions to Separation Criteria
- 9A.3.4 Exceptions to Penetration Requirements
- 9A.3.5 Wall Deviations
- 9A.3.6 Door Deviations
- 9A.3.7 Smoke Removal
- 9A.4 Safe Shutdown Analysis by Fire Area
- 9A.4.1 Reactor Building
- 9A.4.2 Fuel Building
- 9A.4.3 Control Building
- 9A.4.4 Turbine Building
- 9A.4.5 Radwaste Building
- 9A.4.6 Electrical Building
- 9A.4.7 Yard
- 9A.4.8 Service Water Pump House
- 9A.4.9 Service Building
- 9A.5 Fire Protection Analyses by Room or Fire Zone
- 9A.5.1 Reactor Building

- 9A.5.2 Fuel Building
- 9A.5.3 Control Building
- 9A.5.4 Turbine Building
- 9A.5.5 Radwaste Building
- 9A.5.6 Electrical Building
- 9A.5.7 Yard
- 9A.5.8 Service Water Pump House
- 9A.5.9 Service Building
- 9A.6 Special Cases
- 9A.6.1 Piping Penetrations, Reactor Building
- 9A.6.2 Fire Door Deviations
- 9A.6.3 Pipe Break Analyses
- 9A.6.4 Fire Separation for Divisional Electrical Systems
- 9A.6.5 Underground Structures without Sprinkler Protection
- 9A.6.6 Lack of Fire Fighter Exterior Access Openings, without Sprinkler Protection
- 9A.7 Col Information

Appendix 9B. Summary of Analysis Supporting Fire Protection Design Requirements

- 9B.1 Introduction
- 9B.2 Fire Containment System
- 9B.3 Fire Types
- 9B.4 Fire Barriers
- 9B.5 Allowable Combustible Loading
- 9B.5.1 Permanent Loading
- 9B.5.2 Transient Combustibles
- 9B.5.3 Cable Trays
- 9B.6 References

10. Steam and Power Conversion System

10.1 Summary Description

- 10.1.1 Protective Features
- 10.1.2 COL Information
- 10 1 3 References

10.2 Turbine Generator

- 10.2.1 Design Bases
- 10.2.2 Description
- 10.2.3 Turbine Integrity
- 10.2.4 Evaluation
- 10.2.5 COL Information
- 10.2.6 References
- 10.3 Turbine Main Steam System
- 10.3.1 Design Bases
- 10.3.2 Description
- 10.3.3 Evaluation
- 10.3.4 Inspection and Testing Requirements
- 10.3.5 Water Chemistry (PWR)
- 10.3.6 Steam and Feedwater System Materials
- 10.3.7 COL Information
- 10.3.8 References

10.4 Other Features of Steam and Power Conversion System

- 10.4.1 Main Condenser
- 10.4.2 Condenser Air Removal system
- 10.4.3 Turbine Gland Seal System
- 10.4.4 Turbine Bypass System
- 10.4.5 Circulating Water System
- 10.4.6 Condensate Purification System
- 10.4.7 Condensate and Feedwater System
- 10.4.8 Steam Generator Blowdown System (PWR)
- 10.4.9 Auxiliary Feedwater System (PWR)
- 10.4.10 COL Information

Appendix 10A Alternative design for Steam and Power Conversion System

- 10A.1 Abstract
- 10A.1.1 Protective Features
- 10A.1.2 COL Information
- 10A.1.3 References
- 10A.2 Turbine Generator
- 10A.2.1 Design Bases
- 10A.2.2 Description
- 10A.2.3 Turbine Integrity
- 10A.2.4 Evaluation

- 10A.2.5 COL Information
- 10A.3 Turbine Main Steam System
- 10A.3.1 Design Bases
- 10A.3.2 Description
- 10A.3.3 Evaluation
- 10A.3.4 Inspection and Testing Requirements
- 10A.3.5 Water Chemistry (PWR)
- 10A.3.6 Steam and Feedwater System Materials
- 10A.3.7 COL Information
- 10A.3.8 References
- 10A.4 Other Features of Steam and Power Conversion System
- 10A.4.1 Main Condenser
- 10A.4.2 Condenser Air Removal system
- 10A.4.3 Turbine Gland Seal System
- 10A.4.4 Turbine Bypass System
- 10A.4.5 Circulating Water System
- 10A.4.6 Condensate Purification System
- 10A.4.7 Condensate and Feedwater System
- 10A.4.8 Steam Generator Blowdown System (PWR)
- 10A.4.9 Auxiliary Feedwater System (PWR)
- 10A.4.10 COL Information
- 10A.5 Turbine Building Simplified General Arrangement Drawings

11. Radioactive Waste Management

11.1 Source Terms

- 11.1.1 Fission Products
- 11.1.2 Activation Products
- 11.1.3 Radionuclide Concentration Adjustment
- 11.1.4 Fuel Fission Production Inventory
- 11.1.5 Process Leakage Sources
- 11.1.6 References

11.2 Liquid Waste Management System

- 11.2.1 Design Bases
- 11.2.2 System Description
- 11.2.3 Safety Evaluation Radioactive Releases
- 11.2.4 Testing and Inspection Requirements
- 11.2.5 Instrumentation Requirements
- 11.2.6 COL Information
- 11.2.7 References

11.3 Gaseous Waste Management System

- 11.3.1 Design Bases
- 11.3.2 Offgas System Description
- 11.3.3 Ventilation System
- 11.3.4 Radioactive Releases
- 11.3.5 Testing and Inspection Requirements
- 11.3.6 Instrumentation Requirements
- 11.3.7 Radioactive Offgas System Leak or Failure
- 11.3.8 COL Information
- 11.3.9 References

11.4 Solid Waste Management System

- 11.4.1 Design Bases
- 11.4.2 System Description
- 11.4.3 Safety Evaluation
- 11.4.4 Testing and Inspection Requirements
- 11.4.5 Instrumentation Requirements
- 11.4.6 COL Information
- 11.4.7 References

11.5 Process Radiation Monitoring System

- 11.5.1 Design Bases
- 11.5.2 System Design Bases and Criteria
- 11.5.3 Subsystem Description
- 11.5.4 Regulatory Evaluation
- 11.5.5 Process Monitoring and Sampling
- 11.5.6 Calibration and Maintenance

11.5.7 COL Information

11.5.8 References

12. Radiation Protection

12.1 Ensuring That Occupational Radiation Exposures Are ALARA

- 12.1.1 Policy Considerations
- 12.1.2 Design Considerations
- 12.1.3 Operational Considerations
- 12.1.4 COL Information
- 12.1.5 References

12.2 Plant Sources

- 12.2.1 Contained Sources
- 12.2.2 Airborne and Liquid Sources for Environmental Consideration
- 12.2.3 COL Information
- 12 2 4 References
- 12.3 Radiation Protection
- 12.3.1 Facility Design Features
- 12.3.2 Shielding
- 12.3.3 Ventilation
- 12.3.4 Area Radiation and Airborne Radioactivity Monitoring Instrumentation
- 12.3.5 Post-Accident Access Requirements
- 12.3.6 Post-Accident Radiation Zone Maps
- 12.3.7 COL Information
- 12.3.8 References

12.4 Dose Assessment

- 12.4.1 Drywell Dose
- 12.4.2 Reactor Building Dose
- 12.4.3 Fuel Building Dose
- 12.4.4 Turbine Building Dose
- 12.4.5 Radwaste Building Dose
- 12.4.6 Work at Power Doses
- 12.4.7 COL Information
- 12.4.8 References

12.5 Operational Radiation Protection Program

- 12.5.1 Objectives
- 12.5.2 Equipment, Instrumentation, and Facilities
- 12.5.3 Operational Considerations
- 12.5.4 COL License Information
- 12.5.5 References

Appendix 12A Calculation of Airborne Radionuclides

- 12A.1 Evaluation Parameters
- 12A.2 Example Calculation
- 12A.3 COL Information
- 12A.4 References

13. CONDUCT OF OPERATIONS

13.1 Organizational Structure Of Applicant

13.1.1 COL Information

13.2 Training

- 13.2.1 Reactor Operator Training
- 13.2.2 Training for Non-Licensed Plant Staff
- 13.2.3 COL Information

13.3 Emergency Planning

- 13.3.1 Preliminary Planning
- 13.3.2 Emergency Plan
- 13.3.3 COL License Information

13.4 Review And Audit

13.4.1 COL Information

13.5 Plant Procedures

- 13.5.1 Administrative Procedures
- 13.5.2 Operating and Maintenance Procedures
- 13.5.3 COL Information
- 13.5.4 References

13.6 Physical Security

13.6.1 Preliminary Planning

14. Initial Test Program

14.1 Initial Test Program For Preliminary Safety Analysis Reports

14.2 Initial Plant Test Program For Final Safety Analysis Reports

- 14.2.1 Summary of Test Program and Objectives
- 14.2.2 Test Procedures
- 14.2.3 Test Program's Conformance with Regulatory Guides
- 14.2.4 Utilization of Reactor Operating and Testing Experience in the Development of Test Program
- 14.2.5 Use of Plant Operating and Emergency Procedures
- 14.2.6 Initial Fuel Loading and Initial Criticality
- 14.2.7 Test Program Schedule and Sequence
- 14.2.8 Individual Test Descriptions
- 14.2.9 COL Information
- 14.2.10 References

14.3 Selection Of Tier 1 Criteria and Processes

- 14.3.1 Tier 1, Section 1 Introduction
- 14.3.2 Tier 1, Section 2 Design Descriptions and ITAACs
- 14.3.3 Tier 1, Section 3 Non-System Based Material
- 14.3.4 Tier 1, Section 4 Interface Material
- 14.3.5 Tier 1, Section 5 Site Parameters
- 14.3.6 Summary

15. Safety Analyses

15.0 Analytical Approach

- 15.0.1 Classification and Selection of Events
- 15.0.1.1 Approach For Determining Event Classifications
- 15.0.1.2 Results of Event Classification Determinations
- 15.0.2 Abnormal Events To Be Evaluated
- 15.0.3 Determination of Safety Analysis Acceptance Criteria
- 15.0.3.1 Anticipated Operational Occurrences
- 15.0.3.2 Infrequent Events
- 15.0.3.3 Accidents
- 15.0.3.4 Special Events
- 15.0.4 Event Analysis Format
- 15.0.4.1 Identification of Causes
- 15.0.4.2 Sequence of Events and Systems Operations
- 15.0.4.3 Evaluation of Results
- 15.0.4.4 Barrier Performance
- 15.0.4.5 Radiological Consequences
- 15.0.5 Single Failure Criterion
- 15.0.5.1 Single Failures as Event Initiators
- 15.0.5.2 Application of Single Failure Criteria to Event Analysis
- 15.0.6 References

15.1 Nuclear Safety Operational Analysis

- 15.1.1 Analytical Approach
- 15.1.1.1 NSOA Objective
- 15.1.1.2 NSOA Relationship to Safety Analysis
- 15.1.2 Method of Analysis
- 15.1.2.1 Operational Criteria
- 15.1.2.2 Analysis Assumptions and Initial Conditions
- 15.1.2.3 Event Analysis Rules
- 15.1.3 NSOA Results
- 15.1.3.1 Event Evaluations and Diagrams
- 15.1.3.2 Auxiliary System Evaluation and Diagrams
- 15.1.3.3 Summary Matrices
- 15.1.4 Event Evaluations

15.2 Analysis of Anticipated Operational Occurrences

- 15.2.1 Decrease In Core Coolant Temperature
- 15.2.1.1 Loss Of Feedwater Heating
- 15.2.2 Increase In Reactor Pressure
- 15.2.2.1 Closure of One Turbine Control Valve
- 15.2.2.2 Generator Load Rejection With Turbine Bypass
- 15.2.2.3 Generator Load Rejection With a Single Failure in the Turbine Bypass System
- 15.2.2.4 Turbine Trip With Turbine Bypass
- 15.2.2.5 Turbine Trip With a Single Failure in the Turbine Bypass System

- 15.2.2.6 Closure of One Main Steamline Isolation Valve
- 15 2 2 7 Closure of All Main Steamline Isolation Valves
- 15.2.2.8 Loss of Condenser Vacuum
- 15.2.2.9 Loss of Shutdown Cooling Function of RWCU/SDC
- 15.2.3 Reactivity and Power Distribution Anomalies
- 15.2.4 Increase in Reactor Coolant Inventory
- 15.2.4.1 Inadvertent Isolation Condenser Initiation
- 15.2.4.2 Runout of One Feedwater Pump
- 15.2.5 Decrease in Reactor Coolant Inventory
- 15.2.5.1 Opening of One Turbine Control or Bypass Valve.
- 15.2.5.2 Loss of Non-Emergency AC Power to Station Auxiliaries
- 15.2.5.3 Loss of All Feedwater Flow
- 15.2.6 AOO Analysis Summary
- 15.2.7 COL Information
- 15.2.8 References

15.3 Analysis Of Infrequent Events

- 15.3.1 Loss Of Feedwater Heating With Failure of Selected Control Rod Run-In
- 15.3.2 Feedwater Controller Failure Maximum Demand
- 15.3.3 Pressure Regulator Failure Opening of All Turbine Control and Bypass Valves
- 15.3.4 Pressure Regulator Failure-Closure of All Turbine Control and Bypass Valves
- 15.3.5 Generator Load Rejection With Total Turbine Bypass Failure
- 15.3.6 Turbine Trip With Total Turbine Bypass Failure
- 15.3.7 Control Rod Withdrawal Error During Refueling
- 15.3.8 Control Rod Withdrawal Error During Startup
- 15.3.9 Control Rod Withdrawal Error During Power Operation
- 15.3.10 Fuel Assembly Loading Error, Mislocated Bundle
- 15.3.11 Fuel Assembly Loading Error, Misoriented Bundle
- 15.3.12 Inadvertent SDC Function Operation
- 15.3.13 Inadvertent Opening of a Safety-Relief Valve
- 15.3.14 Inadvertent Opening of a Depressurization Valve
- 15.3.15 Stuck Open Safety-Relief Valve
- 15.3.16 Liquid Containing Tank Failure
- 15.3.17 COL Information
- 15.3.18 References

15.4 Analysis of Accidents

- 15.4.1 Fuel Handling Accident
- 15.4.2 Loss-of-Coolant Accident Containment Analysis
- 15.4.3 Loss-of-Coolant Accident ECCS Performance Analysis
- 15.4.4 Loss-of-Coolant Accident Inside Containment Radiological Analysis
- 15.4.5 Main Steamline Break Accident Outside Containment
- 15.4.6 Control Rod Drop Accident
- 15.4.7 Feedwater Line Break Outside Containment
- 15.4.8 Failure of Small Line Carrying Primary Coolant Outside Containment
- 15.4.9 RWCU/SDC System Line Failure Outside Containment

- 15.4.10 Spent Fuel Cask Drop Accident
- 15.4.11 COL Information
- 15.4.12 References

15.5 Special Event Evaluations

- 15.5.1 Overpressure Protection
- 15.5.2 Shutdown Without Control Rods (Standby Liquid Control System Capability)
- 15.5.3 Shutdown from Outside Main Control Room
- 15.5.4 Anticipated Transients Without Scram
- 15.5.5 Station Blackout
- 15.5.6 Safe Shutdown Fire
- 15.5.7 Waste Gas System Leak or Failure
- 15.5.8 References

Appendix 15A Event Probability Analyses

- 15A.1 Pressure Regulator Failures
- 15A.1.1 Pressure Regulator Downscale Failure
- 15A.1.2 Pressure Regulator Upscale Failure
- 15A.2 Initiating Events With 100% Turbine Bypass Failure
- 15A.2.1 Turbine Trip with Failure of All TBVs
- 15A.2.2 Generator Load Rejection with Failure of All TBVs
- 15A.3 Feedwater Controller Failure Maximum Demand
- 15A.4 Loss Of Feedwater Heating With Failure Of Selected Control Rod Run-In
- 15A.5 Inadvertent Shutdown Cooling Function Operation
- 15A.6 Inadvertent Primary System Depressurization
- 15A.6.1 Inadvertent Opening Of A Safety/Relief Valve
- 15A.6.2 Inadvertent Opening Of A Depressurization Valve
- 15A.6.3 Stuck Open Safety/Relief Valve
- 15A.7 Reactivity And Power Distribution Anomalies
- 15A.7.1 Control Rod Withdrawal Error (RWE)
- 15A.7.1.1 Control Rod Withdrawal Error During Refueling
- 15A.7.1.2 Control Rod Withdrawal Error During Startup
- 15A.7.1.3 Control Rod Withdrawal Error During Power Operation
- 15A.7.1.4 Fuel Assembly Loading Error, Mislocated Bundle
- 15A.7.1.5 Fuel Assembly Loading Error, Misoriented Bundle
- 15A.8 Radioactivity Release
- 15A.8.1 Waste Gas System Leak or Failure
- 15A.8.2 Liquid-Containing Tank Failure
- 15A.8.3 Spent Fuel Cask Drop Accident

Appendix 15B LOCA Inventory Curves

16. Technical Specifications

1.0 Use And Application

2.0 Safety Limits (SLs)

3.0 Limiting Conditions for Operation (LCOs) Applicability and Surveillance Requirements (SR) Applicability

- 3.1 Reactivity Control Systems
- 3.2 Power Distribution Limits
- 3.3 Instrumentation
- 3.4 Reactor Coolant System (RCS)
- 3.5 Emergency Core Cooling Systems (ECCS)
- 3.6 Containment Systems
- 3.7 Plant Systems
- 3.8 Electrical Power Systems
- 3.9 Refueling Operations
- 3.10 Special Operations

4.0 Design Features

5.0 Administrative Controls

16B. Bases

B2.0 Safety Limits (SLs)

B3.0 Limiting Conditions for Operation (LCOs) Applicability and Surveillance Requirements (SR) Applicability

- **B3.1** Reactivity Control Systems
- **B3.2** Power Distribution Limits
- B3.3 Instrumentation
- B3.4 Reactor Coolant System (RCS)
- B3.5 Emergency Core Cooling Systems (ECCS)
- **B3.6** Containment Systems
- **B3.7 Plant Systems**
- **B3.8** Electrical Power Systems
- **B3.9** Refueling Operations
- **B3.10** Special Operations

17. Quality Assurance

17.1 Quality Assurance During Design and Construction

- 17.1.1 Organization
- 17.1.2 Quality Assurance Program
- 17.1.3 Design Control
- 17.1.4 Procurement Document Control
- 17.1.5 Instruction, Procedures, and Drawings
- 17.1.6 Document Control
- 17.1.7 Control of Purchased Material, Equipment, and Services
- 17.1.8 Identification and Control of Materials, Parts, and Components
- 17.1.9 Control of Special Processes
- 17.1.10 Inspection
- 17.1.11 Test Control
- 17.1.12 Control of Measuring and Test Equipment
- 17.1.13 Handling, Storage, and Shipping
- 17.1.14 Inspection, Test, and Operating Status
- 17.1.15 Nonconforming Materials, Parts, or Components
- 17.1.16 Corrective Action
- 17.1.17 Quality Assurance Records
- 17.1.18 Audits
- 17.1.19 References

17.2 Quality Assurance During the Operations Phase

17.3 Quality Assurance Program Document

17.4 Reliability Assurance Program During Design Phase

- 17.4.1 Introduction
- 17.4.2 Scope
- 17.4.3 Purpose
- 17.4.4 Objective
- 17.4.5 GENE Organization for D RAP
- 17.4.6 SSC Identification/Prioritization
- 17.4.7 Design Considerations
- 17.4.8 Defining Failure Modes
- 17.4.9 Operational Reliability Assurance Activities
- 17.4.10 Owner/Operator's Reliability Assurance Program
- 17.4.11 D RAP Implementation
- 17.4.12 Glossary of Terms
- 17.4.13 COL Information
- 17.4.14 References

18. Human Factors Engineering

18.1 Introduction

18.2 Design Goals and Design Bases

18.3 Planning, Development, and Design

- 18.3.1 Introduction
- 18.3.2 Standard Design Features
- 18.3.3 Inventory of Controls and Instrumentation
- 18.3.4 Detailed Design Implementation Process

18.4 Control Room Standard Design Features

- 18.4.1 Introduction
- 18.4.2 Standard Design Feature Descriptions
- 18.4.3 Control Room HSI Technology

18.5 Remote Shutdown System

- 18.6.1 Safety-Related Systems
- 18.6.2 Nonsafety-Related Systems

18.7 Detailed Design of the Operator Interface System

18.8 COL Information

- 18.8.1 Plant Specific Reactor Building Operating Values for EPGs/SAGs
- 18.8.2 EPG/SAG Appendix C: Calculation Input Data and Results
- 18.8.3 HSI Design Implementation Process
- 18.8.4 Number of Operators Needing Controls Access
- 18.8.5 Automation Strategies and Their Effect on Operator Reliability
- 18.8.6 SPDS Integration With Related Emergency Response Capabilities
- 18.8.7 Standard Design Features Design Validation
- 18.8.8 Remote Shutdown System Design Evaluation
- 18.8.9 Local Valve Position Indication
- 18.8.10 Operator Training
- 18.8.11 Safety System Status Monitoring
- 18.8.12 PAS Malfunction
- 18.8.13 Local Control Stations
- 18.8.14 As-Built Evaluation of MCR and RSS
- 18.8.15 Accident Monitoring Instrumentation
- 18.8.16 In-Core Cooling Instrumentation
- 18.8.17 Performance of Critical Tasks
- 18.8.18 Plant Status and Post-Accident Monitoring
- 18.8.19 Performance of HSI Verification and Validation on a dynamic simulator
- 18.8.20 Emergency Operation Information and Control

18.8.21 Supporting Analysis for Emergency Operation Information and Controls

Appendix 18A Emergency Procedure and Severe Accident Guidelines

- 18A.1 Introduction
- 18A.2 Operator Cautions
- 18A.3 RPV Control Emergengy Procedure Guideline
- 18A.4 Primary Containment Control Emergency Procedure Guideline
- 18A.5 Reactor Building Control Emergency Procedure Guideline
- 18A.6 Radioactivity Release Control Emergency Procedure Guideline
- 18A.7 Contingency #1 Emergency RPV Depressurization
- 18A.8 Contingency #2 RPV Flooding
- 18A.9 Contingency #3 Level/Power Control
- 18A.10 RPV and Primary Containment Flooding Severe Accident Guideline
- 18A.11 Containment and Radioactivity Release Severe Accident Guideline

Appendix 18B ESBWR EPG/SAG Compared To Generic BWR EPG

- 18B.1 ESBWR Design Features Affecting the EPG/SAG
- 18B.1.1 ESBWR RPV and Related Features
- 18B.1.2 Isolation Condenser
- 18B.1.3 Emergency Core Cooling Systems
- 18B.1.4 ATWS Mitigation Systems
- 18B.1.5 Containment Features
- 18B.2 Major Difference Between ESBWR and BWROG EPG/SAG Rev. 2
- 18B.2.1 Level Control
- 18B.2.2 Steam Cooling and Alternate Level Control
- 18B.2.3 Emergency Depressurization
- 18B.3 Specific Differences Between ESBWR and BWROG EPG/SAG Rev. 2

Appendix 18C ESBWR EPG/SAG Input Data

- 18C.1 Introduction
- 18C.2 Input Parameters
- 18C.3 Calculation Results

Appendix 18D Operator Interface Equipment Characterization

- 18D.1 Control Room Arrangement
- 18D.2 Main Control Console Configuration
- 18D.3 Large Display Panel Configuration
- 18D.4 Systems Integration

Appendix 18E ESBWR Human-System Interface Design Implementation Process

- 18E.1 Introduction
- 18E.2 HSI Design Implementation Process
- 18E.2.1 The HFE Design Team
- 18E.2.2 The HFE Program and Implementation Plans
- 18E.2.3 System Functional Requirements Analysis
- 18E.2.4 Allocation of Functions

- 18E.2.5 Task Analyses
- 18E.2.6 Human-System Interface Design
- 18E.2.7 Procedure Development
- 18E.2.8 Human Factors Verification and Validation
- 18E.2.9 HSI Implementation Requirements
- 18E.2.10 HFE Design Team Composition

Appendix 18F Emergency Operation Information and Controls

Appendix 18G Design Development and Validation Testing

- 18G.1.1 Introduction
- 18G.1.2 Design Development
- 18G.1.3 General
- 18G.1.4 Standard Control Room Design Features
- 18G.1.5 Allocation of Functions
- 18G.1.6 Operator Work Load
- 18G.1.7 Other Areas of Interest
- 18G.2 Validation Testing
- 18G.2.1 General

Appendix 18H Supporting Analysis for Emergency Operation Information and Controls

19. PRA And Severe Accidents

19.1 Introduction and Summary

- 19.1.1 Regulatory Requirements for PRA and Severe Accidents
- 19.1.2 NRC Safety Goals
- 19.1.3 Comparison against NRC Safety Goals

19.2 PRA Summary and Results

- 19.2.1 Internal Events Analysis
- 19.2.2 External Events Analysis
- 19.2.3 Shutdown Risk Analysis
- 19.2.4 Containment Performance Analysis
- 19.2.5 Offsite Consequences Analysis
- 19.2.6 References

19.3 Severe Accident Management

- 19.3.1 Overview of ESBWR Severe Accident Design Features
- 19.3.2 Overall Severe Accident Assessment Methodology
- 19.3.3 Direct Containment Heating (DCH)
- 19.3.4 Ex-Vessel Steam Explosions (EVE)
- 19.3.5 Basemat Melt Penetration (BMP)
- 19.3.6 Results and Conclusions

19.4 PRA Insights Affecting ESBWR Design

- 19.4.1 Introduction
- 19.4.2 Insights from Level 1 Internal Events Analysis
- 19.4.3 Insights from Seismic Analysis
- 19.4.4 Insights from Fire Analyses
- 19.4.5 Insights from Flooding Analyses
- 19.4.6 Suppression Pool Bypass and Ex-Containment LOCA Insights
- 19.4.7 Shutdown PRA Insights
- 19.4.8 Insights from Level 2 Severe Accident Analyses
- 19.4.9 Severe Accident Mitigation Design Alternatives
- 19.4.10 Summary and Conclusions
- 19.4.11 References

19.5 PRA-Based Reliability, Availability And Maintainability

- 19.5.1 General Approach
- 19.5.2 Important Structures, Systems and Components (Level 1)
- 19.5.3 Important Structures, Systems and Components (Level 2)
- 19.5.4 Important Structures, Systems and Components (Seismic)
- 19.5.5 Important Structures, Systems and Components (Fire)
- 19.5.6 Important Structures, Systems and Components (Flood)
- 19.5.7 Important Structures, Systems and Components (Shutdown)
- 19.5.8 Important Systems with Redundant Trains
- 19.5.9 Important Capabilities Outside the Control Room

19.5.10 Reliability and Maintenance Actions

19.6 Regulatory Treatment of Non-Safety Systems

- 19.6.1 Introduction and Background
- 19.6.2 Description of the RTNSS Process
- 19.6.3 Review of ESBWR Against Deterministic RTNSS Criteria
- 19.6.4 Review of ESBWR Against Probabilistic RTNSS Criteria
- 19.6.5 Results